Ñо¿ÔºÖÂÁ¦´òÔì¿ÆÑ§Ñо¿¼°È˲ÅÅàÑø¸ßµØ
Campus news.µ±Ç°Î»ÖãºÊ×Ò³ ¡ú ʦ×ʶÓÎé
ѧÊõ±¨¸æ | Perovskite D
+Ìì½ò´óѧ·Ö×Ó+Ñо¿ÔºAdvanced
+ʦÐÖʦ½ã˵ | Ö°³¡Ð£ÓÑ·Ã̸£¨Ò»£©
+¡¾ÆÕÍ¨ÍÆÃâ¡¿¡ªÌì½ò´óѧ·Ö×Ó£«Ñо¿Ôº20
+·Ö×Ó+Ñо¿Ôº´óÐÍÒÇÆ÷²âÊÔÆ½Ì¨³¡·¢Éä͸Éä
+·Ö×Ó+Ñо¿Ôºº«Ã÷Ó½ÌÊÚÈëÑ¡¡°Schol
+Ìì½ò´óѧ·Ö×Ó+Ñо¿Ôº³ÏƸº£ÄÚÍâÓ¢²Å
+ѧÊõ½²×ù | ³¬·Ö±æÆ×ѧÀíÂÛ¡ª¡ªÕë¼âÏÂ
+ѧÊõ½²×ù | ÈõñîºÏ·Ö×Ó½áµçÊäÔËÐÔÖʵÄ
+Ìì½ò´óѧ·Ö×Ó+Ñо¿Ôº³ÂÐÇ¿ÎÌâ×é·¢²¼×ÔÊÊ
+ÐÕÃû£º Áõ´ä²¨
Ö°³Æ£º ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦
ÓÊÏ䣺cbliu@tju.edu.cn
Ñо¿·½Ïò£º ÎÞ»ú²ÄÁϵ÷¿ØÖØË®Îªë®Ô´µÄë®´úµçºÏ³É.
1. ¸öÈ˼ò½é£º
Áõ´ä²¨£¬ÄУ¬2015Ä격ʿ±ÏÒµÓÚÌì½ò´óѧ£¨µ¼Ê¦£ºÕűø½ÌÊÚ£©£¬2015-2019ÄêÔÚÐÂ¼ÓÆÂ¹úÁ¢´óѧ×ö²©Ê¿ºóÑо¿£¨ºÏ×÷µ¼Ê¦£ºLoh Kian Ping½ÌÊÚ£©£¬2020ÄêÈëÖ°Ìì½ò´óѧ·Ö×Ó£«Ñо¿Ôº£¬ÈΓ±±ÑóѧÕßÓ¢²Å¼Æ»®”¸±½ÌÊÚ£¬2024ÄêÈëÑ¡¹ú¼Ò“ËÄÇà”È˲ţ¬ÈΓ±±ÑóѧÕßÓ¢²Å¼Æ»®”¾«Ó¢½ÌÊÚ¡£
2. Ñо¿³É¹û£º
×ÔÈëÖ°ÒÔÀ´£¬ÒÔÒ»×÷¡¢Í¨Ñ¶¼°ºÏ×÷ÕßÉí·ÝÔÚNat. Rev. Chem.¡¢Nat. Chem.¡¢Nat. Sustain.¡¢Nat. Catal.¡¢Nat. Nanotechnol.¡¢Nat. Protoc.¡¢Nat. Synth.¡¢Acc. Chem. Res.¡¢J. Am. Chem. Soc.£¨6£©¡¢Sci. Adv.¡¢Nat. Commun.£¨8£©¡¢Angew. Chem. Int. Ed.£¨12£©¡¢Natl. Sci. Rev.µÈÆÚ¿¯·¢±íÂÛÎÄ60ÓàÆª£¬½üÎåÄêËûÒý7000Óà´Î¡£ÉêÇë·¢Ã÷רÀû10ÓàÏÊÚȨ4Ïî¡£
3. ѧÊõ¼æÖ°£º
£¨1£©µ£ÈÎFront. Chem.¡¢Academia Catalysis¡¢Materials¡¢Int. J. Green Technol.¡¢Curr. Altern. EnergyµÈÆÚ¿¯±àί¡£
£¨2£©µ£ÈÎNat. Catal.¡¢Nat. Commun.¡¢J. Am. Chem. Soc.¡¢Angew. Chem. Int. Ed.µÈÆÚ¿¯Éó¸åÈË¡£
4. ÏîÄ¿Çé¿ö£º
£¨1£©¹ú¼Ò¼¶ÇàÄêÏîÄ¿£¨Ö÷³Ö£¬150Íò£»ÔÚÑУ©¡£
£¨2£©¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¨50Íò£»22371205£»Ö÷³Ö/ÔÚÑУ©¡£
£¨3£©¹ú×ÔÈ»¿ÆÑ§»ù½ðÇàÄê¿ÆÑ§»ù½ðÏîÄ¿£¨24Íò£»22001192£»Ö÷³Ö/½áÌ⣩¡£
£¨4£©¹ú¼ÒÖØµãÑз¢¼Æ»®ÏîÄ¿£¨220Íò£»2023YFA1507400£»¹Ç¸É/ÔÚÑУ©¡£
£¨5£©¹ú¼ÒÖØµãÑз¢¼Æ»®ÏîÄ¿£¨140Íò£»2024YFA1510100£»²ÎÓë/ÔÚÑУ©¡£
£¨6£©Ìì½ò´óѧ¿ÆÑÐÆô¶¯»ù½ð£¨50Íò£»Ö÷³Ö£©¡£
£¨7£©Ìì½ò´óѧ×ÔÖ÷»ù½ð-³É¹ûÅàÓýÏîÄ¿£¨10Íò£»2023XCG-0073£»Ö÷³Ö/½áÌ⣩¡£
£¨8£©Ìì½ò´óѧ×ÔÖ÷»ù½ð-¼¼Êõ¹¥¹ØÏîÄ¿£¨10Íò£»2022XJS-0098£»Ö÷³Ö/½áÌ⣩¡£
5. ÈÙÓþ½±Àø£º
£¨1£©Ìì½òÊÐ×ÔÈ»¿ÆÑ§Ò»µÈ½±£¨3/6£©(2024)¡£
£¨2£©¹ã¶«Ê¡×ÔÈ»¿ÆÑ§¶þµÈ½±£¨4/6£©(2024)¡£
£¨3£©Ìì½ò´óѧ×ÔÈ»¿ÆÑ§¿Æ¼¼´´Ð¶þµÈ½±£¨4/4£©(2023)¡£
£¨4£©È«Çòǰ2%¶¥¼â¿ÆÑ§¼Ò°ñµ¥£¨2023¡¢2024£©¡£
6. ²¿·Ö³É¹û£º
(1) Huizhi Li, ..., Bin Zhang*, Cuibo Liu*. Adsorption Configuration and H* Flux Modulation Enable Electrocatalytic Semihydrogenation of Alkynes with Group Tolerance in a Palladium Membrane Reactor. J. Am. Chem. Soc. 2025, 147,17849–17859.
(2) Haotian Wang, ..., Bin Zhang*, Cuibo Liu*, Fluorine···π Induced Alkyne Concentrating and Orderly Arranged Sulfonate-Adjusted Interfacial Water Structure Promote Alkene Electrosynthesis at Large Current Densities. Angew. Chem. Int. Ed. 2025, 64, e202513463. (Very Important Paper)
(3) Rui Li, ..., Cuibo Liu*, Bin Zhang*, Defect-Induced Electron Localization Promotes D2O Dissociation and Nitrile Adsorption for Deuterated Amines. Angew. Chem. Int. Ed. 2025, 64, e202424039. (Very Important Paper)
(4) Jinghui Zhao, ..., Cuibo Liu*, Bin Zhang*, Alloy Synergy Activation and Hydroxylamine Overhydrogenation Inhibition for Ampere-Level 15N-Labelled Oximes Electrosynthesis. Angew. Chem. Int. Ed. 2025, in minor revision.
(5) Mengmei Qin, ..., Cuibo Liu*, Bin Zhang*, Surfactant Enhanced Cuδ+ and Induced Electrostatic Force Promoted Dechlorination for Deuteroacetic Acid Electrosynthesis with D2O. Nat. Commun. 2025, in minor revision.
(6) Cuibo Liu, …, Bin Zhang*. Electrochemical Hydrogenation and Oxidation of Organic Species involving Water. Nat. Rev. Chem. 2024, 8, 277–293. (Highly Cited Paper)
(7) Cuibo Liu, …, Bin Zhang*. Organonitrogen Electrosynthesis from CO2 and Nitrogen Sources in Water. Nat. Synth. 2024, 3, 794–796.
(8) Meng He, …, Cuibo Liu*, Bin Zhang*. Microenvironment Regulation Breaks the Faradaic Efficiency–Current Density Trade-Off for Electrocatalytic Deuteration using D2O. Nat. Commun. 2024, 15, 5231.
(9) Cuibo Liu, …, Bin Zhang*. Designed Nanomaterials for Electrocatalytic Organic Hydrogenation using Water as the Hydrogen Source. Acc. Chem. Res. 2023, 56, 1872–1883.
(10) Shuyan Han, …, Bin Zhang*, Cuibo Liu*. Preferential Adsorption of Ethylene Oxide on Fe and Chlorine on Ni Enabled Scalable Electrosynthesis of Ethylene Chlorohydrin. Angew. Chem. Int. Ed. 2023, 62, e202216581. (Very Important Paper)
(11) Huizhi Li, …, Cuibo Liu*, Bin Zhang*. σ-Alkynyl Adsorption Enables Electrocatalytic Semihydrogenation of Terminal Alkynes with Easy-Reducible/Passivated Groups over Amorphous PdSx Nanocapsules. J. Am. Chem. Soc. 2022, 144, 19456–19465. (Front Cover)
(12) Rui Li, …, Cuibo Liu*, Bin Zhang*. One-Pot H/D Exchange and Low-coordinated Iron Electrocatalyzed Deuteration of Nitriles in D2O to α,β-Deuterio Aryl Ethylamines. Nat. Commun. 2022, 13, 5951.
(13) Shuoshuo Guo, …, Bin Zhang*, Cuibo Liu*. Electrocatalytic Hydrogenation of Quinoline with Water over a Fluorine-Modified Cobalt Catalyst. Nat. Commun. 2022, 13, 5297.
(14) Yongmeng Wu, Cuibo Liu(¹²Ò»), …, Bin Zhang*. Converting Copper Sulfide to Copper with Surface Sulfur for Electrocatalytic Alkyne Semi-Hydrogenation with Water. Nat. Commun. 2021, 12, 3881. (Featured in Nature Communications Editor's Highlights)
(15) Xiaodan Chong, Cuibo Liu(¹²Ò»), …, Bin Zhang*. Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of α-Nitrotoluenes to E-Nitroethenes. Angew. Chem. Int. Ed. 2021, 60, 22010–22016. (Hot Paper)
(16) Yongmeng Wu, Cuibo Liu(¹²Ò»), …, Bin Zhang*. Selective Transfer Semihydrogenation of Alkynes with H2O (D2O) as the H (D) Source over a Pd-P Cathode. Angew. Chem. Int. Ed. 2020, 59, 21170–21175. (Highlighted by Synfacts 2021, 17, 0189)
(17) Xiaodan Chong, Cuibo Liu(¹²Ò»), …, Bin Zhang*. Potential-Tuned Selective Electrosynthesis of Azoxy-, Azo- and Amino-Aromatics over a CoP Nanosheet Cathode. Natl. Sci. Rev. 2020, 7, 285–295. (Highly Cited Paper)
(18) Cuibo Liu, …, Bin Zhang*. Electrocatalytic Deuteration of Halides with D2O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angew. Chem. Int. Ed. 2020, 59, 18527–18531. (Very Important Paper)
ÍŶÓÖ÷Ò³£ºhttps://www.x-mol.com/groups/bzhangtju
¡¾¹Ø×¢·Ö×Ó+Ñо¿Ôº¡¿
ÁªÏµµç»°£º86£«022-87371889
µç×ÓÓÊÏ䣺molecularplus@tju.edu.cn
µØÖ·£ºÌì½òÊÐÄÏ¿ªÇøÎÀ½ò·92ºÅµÚ11½Ìѧ¥
2021 Copyright ©All Rights Reserved. ±¸°¸ºÅ£º½òICP±¸05004358ºÅ ½ò¹«Íø°²±¸ 12010402000425ºÅ¡¾ÉùÃ÷¡¿